Agalma: an automated *de novo* transcriptome assembly pipeline

Mark Howison

CCV/EPSCoR Bioinformatics Workshop
October 19, 2012
Motivation

- “I have 30 million paired-end RNA-Seq reads and no reference genome. What next?”
- Automating *de novo* transcriptome assembly:
 - Filtering and assembling paired-end Illumina data
 - Collecting diagnostics and generating reports
 - Providing fault-tolerance
 - Profiling CPU and memory usage
Overview of pipeline

- ‘Sanitize’ reads according to quality criteria
- Estimate the insert size of the read pairs
- Remove ribosomal RNA
- Assemble

Common paradigm:
- Assemble a random subset of reads (Oases)
- Use the subassembly in a mapping (BLAST, Bowtie2)
Sanitize

- Randomizes the order of read pairs
- Runs FastQC
- Discards reads that:
 - fall below a mean quality threshold
 - contain Illumina adapter sequences
 - have skewed base composition
 (any base is < 5% or > 60% of the sequence)
Estimate insert size

- **Subassembly**: 100K high-quality reads
- **Mapping (Bowtie2)**: 10K read pairs against subassembly
- Extract estimated gap between pairs from SAM output
- Mean and stdev are used by downstream tools
Remove ribosomal RNA

- **Subassemblies**: 500 to 1M reads (log scaled)
- **Mapping (BLASTN)**: subassemblies against curated rRNA sequences from a related species
 - Identify an “exemplar” sequence for each rRNA gene
- **Mapping (Bowtie2)**: rRNA subassemblies against all reads
 - Excludes all reads with an rRNA hit
Assemble transcripts

- Filters reads again at a higher mean quality threshold
- Supports different assembly “protocols” (Oases, Trinity)
- Screens out rRNA and vector contaminants
- BLASTX against SwissProt: how much is “real”?
Assemble transcripts

- Map reads onto assembly to generate coverage map

![Graph showing read coverage across exemplar transcripts](image-url)
Future directions

- More assembly protocols (e.g. Trinity)
- Assembly comparison
 - Within or between assemblers
- Normalizing reads prior to assembly
 - Reduces variation in read coverage
- Translation, annotation, phylogenomics...
Availability

- Source code is available on Github under a GPL license:

 https://github.com/caseywdunn/agalma

- On Oscar:

  ```bash
  $ module load agalma
  ```

- Please contact me if you would like help using Agalma!
Acknowledgement

- Agalma developers:
 - Casey Dunn
 - Nick Sinnott-Armstrong
 - Felipe Zapata
- Thanks to Stefan Siebert, Steve Haddock, Warren Francis, and Lingsheng Dong for their feedback
- Funding from NSF [0844596, 0844596, 1004057]